

BlueSolar Charge Controller MPPT 150/35 & 150/45

www.victronenergy.com

Solar Charge Controller MPPT 150/35

Ultrafast Maximum Power Point Tracking (MPPT)

Especially in case of a clouded sky, when light intensity is changing continuously, an ultra-fast MPPT controller will improve energy harvest by up to 30% compared to PWM charge controllers and by up to 10% compared to slower MPPT controllers.

Advanced Maximum Power Point Detection in case of partial shading conditions

If partial shading occurs, two or more maximum power points may be present on the power-voltage curve. Conventional MPPTs tend to lock to a local MPP, which may not be the optimum MPP.

The innovative BlueSolar algorithm will always maximize energy harvest by locking to the optimum MPP.

Outstanding conversion efficiency

No cooling fan. Maximum efficiency exceeds 98%. Full output current up to 40°C (104°F).

Flexible charge algorithm

Fully programmable charge algorithm (see the software page on our website), and eight preprogrammed algorithms, selectable with a rotary switch (see manual for details).

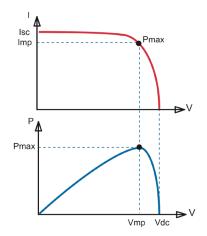
Extensive electronic protection

Over-temperature protection and power derating when temperature is high.

PV short circuit and PV reverse polarity protection.

PV reverse current protection.

Internal temperature sensor


Compensates absorption and float charge voltage for temperature.

Real-time data display options

- Color Control GX or other GX devices: see the Venus documents on our website.
- A smartphone or other Bluetooth-enabled device: VE.Direct Bluetooth Smart dongle needed.

Maximum Power Point Tracking

Output current (I) of a solar panel as function of output voltage (V).

The Maximum Power Point (MPP) is the point Pmax along the curve where the product I x V reaches its peak.

Lower curve:

Output power $P = I \times V$ as function of output voltage.

When using a PWM (not MPPT) controller the output voltage of the solar panel will be nearly equal to the voltage of the battery, and will be lower than Vmp.

Blue Solar Charge Controll	
Battery voltage	
Rated charge current	
Nominal PV power 1a, b)	
Max. PV short circuit current 2)	
Maximum PV open circuit voltage	
Maximum efficiency	
Self-consumption	
Charge voltage 'absorption'	
Charge voltage 'float'	
Charge algorithm	
Temperature compensation	
Protection	
Operating temperature	
Humidity	
Data communication port	

Co

Ро

Pro

We

Dir

BlueSolar Charge Controller	MPPT 150/35	MPPT 150/45	
attery voltage	12 / 24 / 48V Auto Select (software tool needed to select 36V)		
ated charge current	35A	45A	
ominal PV power 1a, b)	35A 12V: 500W / 24V: 1000W / 36V: 1500W / 48V: 2000W 45A 12V: 650W / 24V: 1300W / 36V: 1950W / 48V: 2600W		
ax. PV short circuit current 2)	40A	50A	
aximum PV open circuit voltage	150V absolute maximum coldest conditions 145V start-up and operating maximum		
aximum efficiency	98%		
elf-consumption	12V: 20 mA 24V:	15 mA 48V: 10mA	
narge voltage 'absorption'	Default setting: 14,4 / 28,8 / 43,2 / 57,6V (adjustable)		
narge voltage 'float'	Default setting: 13,8 / 27,6 / 41,4 / 55,2V (adjustable)		
narge algorithm	multi-stage adaptive (eight pre-programmed algorithms)		
emperature compensation	-16 mV / -32 mV / -64 mV / °C		
rotection	PV reverse polarity / output short circuit / over-temperature		
perating temperature	-30 to $+60^{\circ}$ C (full rated output up to 40° C)		
umidity	95%, non-condensing		
ata communication port	VE.Direct See the data communication white paper on our website		
ENCLOSURE			
olour	Blue (RAL 5012)		
ower terminals	16 mm² / AWG6		
otection category	IP43 (electronic components), IP22 (connection area)		
eight eight	1,25 kg		
imensions (h x w x d)	130 x 186 x 70 mm		
STANDARDS			
ıfety	EN/IEC 62109-1, UL 1741, CSA C22.2		
16 514 1 1 1 1 1 1	HILD IN I		

1a) If more PV power is connected, the controller will limit input power.

1b) PV voltage must exceed Vbat \pm 5V for the controller to start. Thereafter minimum PV voltage is Vbat \pm 1V.

2) A PV array with a higher short circuit current may damage the controller.

